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SUMMARY

The objective of this program was to establish the advantages/disdavanteges
and life cycle cost impact for two types of 1990+ time frame airclanes, onc
which has hydr: lically powered actuation systems (Baseiine Airplane) .nd the
other which has electrically powered actuation systems (All-Electric cr Fower-
By-kire Airplane). A& secondary objective of this program was to identify the
1990+ technology needs and dcvelopment reguirements of hydraulic, power-ty-
wire actuation systems and secondary power systems for future aircraft. The
comparison was made of both the actuation and the secondary power systems.
Parameters that were quantified for comparison were weight, reliability/
maintainability and life cycle costs. In addition, gualitative eveluations
were mauc on the basis o7 structural integraticn, growth potential,
survivebility/vulnerabii ity, EMC/1ightning, environmental constraints and
technology risks.

] H T [ -~ T Ma.. 21 __a
The study was condycted in thr hases.  In Phese I, Developmeint «

~An
[ax%y

~- T}

Data Base, an air-tc-surface (ATS) airrplane configuration was estsblished, th

(]

’

actuation functions were defined, and the recquirements for these actuation
systems were established.

The study was ccnducted using the Boeing Model 987-350 ATS as the poirt of
ref. rence airplane for which engineering development would begin in 1990,
production in 1995, and initial orerational capability (ICC) in 1997. The
model 987-350 has &1 &ll-meving canard, an arrow wing, win pod-mounteu
engines with variabiz geometry inlets and two-dimensionel vectoring and thrust
reversing noz: es, & thrust-to-weight ratio of C.87 and a maximum gross weight
of 46,000 1bs. The airglene carries an internally mcunted 25 mm gun ard 5000
1bs of air-to-ground weatons. The airplape is designed for a high level {Mach
2.2) end a low level (Mach C.9 to 1.2) interdiction mission. The design life
's 10,000 flight hours and 6,000 landings.

The actuition functions defined were flight controls {canerd, elecvons, rudder,
sroilers and Teading edge flaps), engine controls (inlet centerbody and bypass
doors), landing gear (retraction, steering and brakes), 2erial refueling (door
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and rozzle latch), and caropy. Thrust vectoring/reversing actuation was
determined to be pneumatic in the high temperature environment of that
application, and therefore was not part of the hydraulic/electric actuation
trade study. I[n addition, drive power for the 25-mm gun an¢ envirenmental
control system (boost and pack compressors, and cocling fan) was included.
The actuation requirements were defined in sufficient detail so tnat syst 'ms
for both the Raselire and All-Electric Airplanes could be designed.

An electrical load analysis was also prepared. The load analysis included the
normal housekeeping and avionics electrical loads aleng with power
requirements for actuation systems.

In Phase II, Design of Two Airplanes, the ectuatior and secondary power
systems were desijned for the Baseline and All-Electric Airplanes. Severel
configurations for each actuation function were developed and the ortimum
system was selected based cn weight, envelore for structural integration,
efficiency, power demand, system complexity ana technology projections into
the 1990's. 1lhe design and selection of the actuation systome for the A1,
tlectric Airplane were primarily conducted with d:-ta supplied by tre
AiResearch Fanufacturing Company of California under a subcontract. The rover
demands were determined for the hydraulic end eiectrical systems for the
Baselire Airplane and for the e2lectrical system for the All-Electric Airrplane.
Several secondary power system configurations were develored for both
airplanes and an optimum system selected for each.

In Phese 111, Trade Study, data for systems weights, reliability/
maintainability, and Tife cvcle costs were developed.

The reliability was computed by defining the minimum ecuipment levels for lcss
of mission end loss of aircraft, developing the fault trees and computing the
protabilities.

The meintainebility and life cycle costs were determined using the RCA PRICE
and PRICE L computer programs. Each system (actuation and secondary power)
for toth airrlanes was btroken down to the line replaceable unit (LRU) end
varicus input rarameters were develorea describing the quantity, weight, ratio
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of structurc and electronics, complexities, and development end production
dates. The output frc the PRICE progrem provided mean-time-cetweer-failure
(FTBF), develomment costs, and production costs. The PRICE L program also
provided the Qperating and Support Costs.

Based on tke above dete, overzll weights, reliability/maintainability and 1ife
cycle costs were computed and compared. Along with this a quslitative
assessment of the structural integration, growth potential, survivability/
vulnerability, EMC/Vightning, envirommental constraints, and technology risk
of the actuation and secondary power systems of both airplenes was conducted.

The vesults of this program indicate that the Al1.Electric Airplane offers a
potential for reducing the life cycle costs of the ectuation and secondary
pcwer systems by approximetely 12% compared to the Baseline Airplane
configuration. On an airplene of this tyre and size the weicht peralty
associated with EM actuation with respect to hydraulic actuation is offset by
the weight sevings in the secondary power system. The secondary power system

for the AV Dleciric Airplane uses enging-shatt mourted main AC geicirators as
opposed to the AMAD concept for the Baseline Airplanc. This results in
reduced ground checkout capability for monitoring the mair generator without

running the engines.

The probabilities of mission success and airplane safety ¢re comparable for
both eirplanes. The MTBF of the EM actuation system was lower than the
hydraulic actuation; the MTBF of All-Electric secondary pcver system vas
higher than the conventional mixed hydraulic/electric secondary power system,
Eut not enough higher to completely offset the lover MTRF of EM actuation.

Assessment of the other factors indicated that EM actuation and electricel
secondary power system could easc structural integration prcblems and provide
additional growth potential. From a survivability/vulnerability standpoint
the hydraulic power system was mcre vulnerable then the electrical system from
weapens effects, wnereas the EM actuation system was more vulnerable to
Jamming diue to the recessity of gearboxes in every apprication. EMC/Tightning
effects coculd imgpact the fly-by-wire (FBY) and electrical systems in either
airglane, but the EM actuation would alsc be impacted in the All-Electric
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Firplane. There were no high technology risks associated with the Baseline
Airgpiene.

The study also indicated that a hybrid system arrangement may have some
benefit. The results show that the primary cayoff for the All1-flectric
Airplane resulted from elimiration of the engine driven hydr -ulic system,
i.e., adapting a single source p er system. These benefits could also be
real ized through the application of integrated actuator packages (IAP),
electr.c motor driven hydraulic actuator systems. These showed some rotential
tenefit for certain flight control functions. For exemple, the study results
indicated that use of an IAP for rudder a:tuation offerec no weight renalty
over the EM actuator and has . lover development risk.

The results and conclusions drawn from this study are based on an assumption
that certain technology advencements will be made by the 1590+ time frame.
Technology developments that are reguired to meet these needs or that offer
alternatives in the design of the actuation and secondery power systems vere
identified. For the Baseline Airplane these inciude:

High pressure hydraulic system
Bi-directional power transfer units
Fydraulic fuses and circuit breakers
Loed adaptive/stored energy actuators
Advenced fly-by-wire actuators

c O O O O o

Steged sequential serve ram actuation
For the All.Eiectric Pirplene the tecknology needs include the develomment ¢“:

Lightweignt, high efficiency gearboxes
Speed ortimized electric moters
Load- adaptive/stored eneigy actiation techniques

0
¢
0
u Variable authority EM actuators

o Controller/inverters

o0 High voltage DC electric systems

0 Integrated actuator packages
Several of these developments iduntified for bcth the Baseline and the
All.Electric AMirplanes are applicable to a hybrid system.

xvii
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1.1 PRackground

Current eaircraft are cherazterized by having twe mein forms of on-board
secondary power gereration, distribution, and utilization., i.e., electrical
power and hydraulic power. In geueral, hydraulic power is gererated,
distributed, and utilized for the majority of the actuation jobs including
flight controi surtaces, landing gear extension and retraction, brakes, and
nose vheel steering. Electrical power is used for functions like stability
eugmentation, fuel and engine control, heating and cooling, lighting,
avionics, weapons control, instrumentatioun, and utility air vehicle functions.
Powered actuatior is essential 1n today's high-performence sircraft. Landing
gear, gun drive, and canopy orperation 2also require high power. Sugerior
airplane controllability and handling qualities characteristics recuire not
only high power, but also accurate and respecnsive controls. Fydraulic
actuation has become the mainstay for most of these control tasks because of
Pigh torque-to-inertie cacability, high power and weight etticiency, and
tremendous development and experience. Technology advencements in the
electromechanical field are showing promise for alternative means cf
actuation, Consideration needs to be given and evaluations made with these
new technology trends in mind.

Major factors stimuleting the application of power-by-wire actuation are in
the advancemerts in kigh-voltage power suprl ‘es, rare earth permanent megnet
motors, electronic commutation, and improved solid-state power switching
devices. Trhese factors lead to the objectives of this study which are:

(1) Establish advantages/diseaavantages and life cycle ccst impact of
hydraulically powered actuation and electrically rowered actuation for
aircraft in the 1990+ time frame.

(2) Identify technology needs, risks, and development recuirements for future
aircraft actuati n systems.

1.2 Cbjective

The objective ¢f this study was to conduct a tradec-cff comparison between a




2
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“"Bascline Airplane" (one that contzins an engine-driven hydraulic system for
actuation) and an "All-Electric Airplzne" (one that contains only an
engine-driven electrical system for rower-by-wire actuation). The study was
conducted on an ATS airplene. The airplane is designed for a high
survivability interdiction mission. For the trez“e, each “airrlanc” is
designed to utilize every beneficiel technology advancement considered
available in the 1990+ time frame. Six areas of actuation were considered in
the study. These were the flight ccntrols. engine inlet controls, thrust
reverser/vector contrcls, lan'ing gear, aerial refueling, and canory
actuation. In addition the qun controls and ECS were considered as users of
secondary rower.

1.2 Approach

The program was divided into three rhases as follows:

Phasa I - Devclopment of ATS Design Data Rase
Phase Il - Design of Two Airrlanes
Phase IIl - Airplane Actuation Trede Study

Baseline firplane

The hydraulic/electric rowered airplane was termed the Baseline Airplane. The
hydraulic actuation systems consicered various tyres of power drive units,
output mechanisms, and control valving. Secondary rower extracticn is
accomplished by rower take-off shafts from each engine which drive airfreme
mounted accessory drives (AMAD). Tre two AMADs are connected togcther and to
a LCX/JP-4 \ntegrated Power Unit (1PU} through an angle gearbox. During
normal flight, the AFADs are driven by their respective engines and the angle
gearbox is declutched. During an emergency, shaft rower can be extracted frem
the ofrosite engine or the [PU through the angle gearbox, Each AMAD drives
two hydrauiic pumps and an electrical generator. The right-hand AMAD also
drives the ECS boost compressor. This AMAD configuration provides the
carability to operate the emgine driven secondary power system without

orerating the engines, for ground checkout.
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MI1-Electric Airplane

Two types of actuation systems were considered for the Al1-Electric Airplane
actuation functions: electromechanical actuation (EMA) systems and integrated
aciuator package (IAP) systems. EMA's were selected for all functions since
they proved lighter and less complex in all cases when compared with the
equivalent [AP. Secondary power extraction is accomplished by a 150-kw
starter-generatcr mounted on the spinner at the frent of cach engine. A third
150-kw generator is mounted on the LCX/JF-4 [ntegrated Power Uait (IPU). The
three generators produce wild frequency power which is converted to 27CV dc by
rhase delay rectifier (POR) bridge canverters. Secondéry converters provide
rower at other voltages required. Interconnection provisions are included in
the three generation systems for engine starting and transfer of loads in case
of failure of the main generation systems. This system provides for ground
checkout of all electrical functions, except the engine-driven generators/
regulators themselves, without operating the engines.

Trade Study
Ten parameters were considered in the trade study of the two airglanes:

Veight

Reliability
Maintainability

Life Cycle Costs
Structural Integraticrn
Growth

Survivebility
E¥C/Lightning Protection
Environmental Constraints
Technology Risk

Quantitative comparison data were develored for the first four paranieters.
Quelitative comparisons were made in the six other areas.
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11 AJRPLANE REQUIREMENTS

The tasic airplene configuration and recuirements which formed the desigr dcta
base for the trade study airplene were deévelored during Phase 1. Design
criteria and recquirements for the actuation functions and other functions
requiring on-board generated secondary power vere defined.

2.1 Airplane Corfiguration

The AlsS missicn concept was specified as the peint-of-reference airplanc. The

Boeing Model 987-350 ATS (Air-to-Surface) Airplane (Figure 1) was chosen for

this purpose. It is a vectored-thrust, canard/arrov. wing with 2

thrust-te-weight ratio of (.87 and a gross weight of 49,000 l'bs. The airplane
corfiguration includes twin rod-mounted engines, wing-shielded hal f-round
variable-geametry inlets, 2-D vectoring and thrust reversing nozzles, ard an

all-moving canard. Armement censists of an internally-mounted 2&5-mm gun, tve

2dvanced short-rarge missiles, and 5000 'bs of air-to-ground weafons mounted "j
semisubmerged in two fuseiege cutouts. Airplane performence is shown in B
Figure 2. STOL teke-off and landing rerforma:nce 1s shown in Figure 2. The NS
airplane is designed for a high-survivebility interdiction mission (Figure 4). "
The f1ight envelore is shown in Figure 5. Design life of tre eirflane is

10,000 flight hours and 6,00C lendings.

2.2 Actuetion System Pequirements

The ATS Model 987-350 actwation system rccuirements were civided into five
areas as follows:

F1ight Controls

Engine Inlet

Land ing Gear

Aerial Refueling

Canopy Actuation

Thrust Reverser/Vector Controls

o o O 0o o o

[t was determined that the thermal enrvircnment for the thrust reverser and ‘
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RETURN 0-43000-0 50% 1.2-0.9-0

* PERCENT QF SHCRT RANGE COMBAT RADIUS

Figure 4 Model 987-350 Micsion Profiles
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vectoring actuaticn systems would be too harsh (Figure 6) for use of
electromechanical or hydraulic actuators without auxiliary cocoling frovisions.

Thus it wes concluded that neither the electromechanical nor the hydraulic
actuators could etfectively comrete with pneunetic ectuators, traditionelly
used in these applications. These high temperatures cen demage insulatior an
electric motor windings, would be close tu the Curie temperature of the
rermanent magenets causing demagnetization, and cause motcr bearing tubricant
probiems. In the case of hydraulic actuators, conventional hydraulic fluids
could not be used and seal problems would also be encountered. To utilize
electromechanical or hydraulic actuators would reguire eithcr one or both of
cooling provisions and remote location of actuators with complex mechanical
linkages to transmit the actuation fc-ces. This would add to the system
complexity and impact the reliability and cost of the system. Therefore,
pneumatic actuation systems for the thrust reversing and vectoring functions
were selected. This allowed the deletion of these actuation functions from
further consideration in this study.

In each of the other arcas the number of actuators recuired for cach functien
and the configuration and redundancy of the actuation systems were defined.

The requirements are summarized in Tables 1 to 4.

2.3 Gur and ECS Power Requirements

Two additional arcas where shaft power is utilized are the 2%-mm gun system
and the enviromental control system,

The gun system recuires 14 hp for the gun drive and 11 np for the ammunition
feed system. This power can be delivered ty an electricai motor or hydraulic
metor. The motors require start-up and reversing capability for shell
ciearing purposes. Figure 7 shows the rower and speed vs firing rate.

The ECS, shown schematically in Fiaure 3, recuires three motors; cne each for
tre btoost compressor, the £CS compressor and the ECS fan. The boost
compressor motor has to provide 50.% hp at speeds verying from 15,00C to
4C,000 rpm to be compatible with the following boost compressor requirements:
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INTEGRATED
NOZZILE/AIRFRAME
STRUCTURE

FIXED GEQMETRY
LOW BOATTAIL COWL
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Figure 6 Engine Exhaust Area Temperatures
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Altitude Airplane Compressor Corrected Comgressor

ft Speed Pressure Patio Air Flow Srecd
PR ibs/min rpm

C Takeoff 1.09 40 18,000

50, C00 g.7™ 4,27 237 4c,0co

where corrected flow is defined as
WT 1b/min4°R

P lb/in2

The ECS Compressor motor has to provide 1C.7 hp at & fixed speed between 50C(
and 22,000 rpm. The ECS fan molor has to provide 42.9 hp at tvo sreeds, ECOC

and 12,000 rpm.

2.4 OQOther Airpiane Power Recuirements

Power requirements for other air vehicle and avionics subsystems are listed in
Table 5. A1l these recuirements are met by electrical power. The kk
requirements for these items are the same for the Easeline and for the Al1l-
Electric Airplanes, excert where noted. The difference is that in the
Raseline Airplane these loads are supplied from 400-rz rower whereas in the
AMl1-Electric Airplens they are suppliec frem 27C-vdc power. It is assumec
that in the 1990 time freme, all these loads will be compatible with either
40C-Hz or 270-vdc power.

Loads net listed in Table 5 ere the same for eitker airplene and do not
divectly impact the trade study. Trese Toads are listed, however, in the
detail Baseline Firplane and Al11-Electric Airplane electrical load analyses.
{Sections III and IV)

2.5 Thermel Recvirements

A thermel mep of the airrlane was cevcloped based on aerodynamic heating et
vach 2.2. Tre skin temperatures are shown in Figure 9. These temperatures

18




TABLE 5
; AIR VEHIGLE AND AVIONICS SYSTEM POWER REQUIREMENTS

i ITEM MAX kW LOAD (Total)
: Electronics Liquid Cooling Pump® 2.40
E Primary Fuel Boost Pump 7.30
) Backup fuel Roost Pump 7.30
: Fuel Transfer Pump 7.30
: Battery Heater 0.30
Windshield Heater 2.50
Radar (Target Acquisition) 1.50
We *pons Heaters 1.00
Air Data Computer 0.07
Air Data System Meaters 1.50
Integrated Information 5.40
Management System
Gun Conirois 3.60
Total Temperature Probe Heaters 0.27
JT10S/ TACAN/IFF 0.70
Clobal Positioning System 0.20
Inertial Reference (Multi-Function) 0.20
. Radar (Multi-Functior) 5.00
é IRCM 2.00
£CM Transmitter 6.00

*» All-Electric Airplane only
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are calculated for a U.S. stardard dey at Mach 2.2, altitude of 4C,C0C to
7C,CC0 ft above sea level, include solar heating, and do not incliude the
engine effects.,

Engine exhaust area temperatures are shown in Figure 6.

2,6 Structural Arrangement

A structural arrangement vas also dcveleped for this aircraft and is chown 1in
Figure 10. This wes required to determine the exact amount of space available
to install the vericus actuaticn systems¢ This elso facilitated the
stiructural integratior of the various actuation system alternatives and
selection of the system vhich would meet this rccuirement with little or no
impact on the aerodynemics of the aircraft.
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IIl BASELINE AIRPLANE CONFIGURATION
3.1 General

The obiective of the design phase was to select the most competitive
combination of hydraulic actuation systems, hyaraulic power systems for
transmitting rower to those actuation systems, and eiectrical power systems
for providing fly-by-wire control to those actuation systems that couid be
considered availeple in the 169C-plus time frame. In keeping with the overall
objectives and requirements, it was required that the selected hydraulic power
system derive its power primarily from the engine through engine-driven pumgs
and transmit that power through a distributed system of hydraulic transmission
line tubing to the actuation systems. The total sccondery power system and
the actiation systems are defined so that a direct comparison can be made with
the Ai1-Electric Airplane design described 1n Section IV,

3.2 Actuetion Systems for the Baseline Airplane

Consideration was given to various types of power drive units, output
mechgnisms and control valving arrangec in a variety ¢f combinetions to suit
the partictlar recuirements for the verious contrnl functions. The tyres of
rower drive units evaluated included pistcn actuators, vane attuators and
multipiston motors. The typss of outrut mechenisms eveivated included bell
cranks, rack-end-pinicon gearing, helical or ball splines, spur gearing, tent-
beam Eccentuators, threeded pover screws or ball screws, and planctary or
skip-tooth gearing for hinge-1ine units. The control valve conceprts
considered were single-stage direct-drive and two-stage electrohydraulic servo
velves, staged sequentially-controlled valves, steprer-motor-driven rctary
valves, and solenoid veives.

After evaluation of the verious actuation systems available, a final
configuraticn was selected for each application. Table 6 summarizes the
selected systems for the airplane flight controls and Tables 7 end & for the
non- fl1ight controi functions. Figure 11 shows the location of the actuators
in the aircraft and Figure 12 shows how these actuators are intcgrated into
the aircraft structure. Each of the .ndividual dapplications s covered in the
following raragraths.
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2.3 Flight Contrc) Actuation

3.3.1 Canard

The canard is a critical flight control surface whose continued control is
essential for mission completior and safety of fiight. Actuation trades
considered the two canard surfaces interconnected as well as separated, even
though no difterential surface control is required since the canard is used
only for pitch control. In addition, both linear and rotary actuator designs
were evaluated. The selected configuration uses 1inear actuators
inderendently controlling each canard surface as shown in Figure 12. The
following reascns are the basis for this selection:

1. The linear actuator system is lighter. This is btecause the length of
the linear actuator is propertional to the total certrol surface
dcflections and the rotary actuator is independent cf the ccntrol
surface deflection., With only 30 degree total surface ceflection,
Iinear actuator stroke is only 4.8 inckes.

2. Due tec the inefficiency of a hydraulic motor and gearbex, the total
power consumption of the rotary actuation system would be higrer. 1In
audition, a hydraulic motor has a higher internil leakége than the
linear actuator. Canards are used for longitudinal trim; and, thre
steady state aerodynemic load causes more fluid leakege across the
hydi-aul ic motors than the linear actuators. This, together with the
high duty cyclc of the canerd surfaces, results in a higher total
power consumption.

3. The configuration withk nc interconnecticn betveen the tvwo canard
surfaces results in less weight and reduces cemgplexity. The eaded
aciuation weight for separate surface control is more than ov¥fecet by
deletion cf the intercornecting mechanism and since no additional
contrel capability is needed in terms of increased power, there is no
impact on secondary power requircnents.

The canard actuation system utilizes four dual-tandem actuators arranged and
Fowered from the three hydravlic systems to meet the redundancy requirement as
specified in Table 4. Tandem actuators are used because they can be plecec

4 o A Ay i P S Lotk Wt W e n i A e b it + .




close to the surface te maintain adequate stiffness between the actuator rod
and the canard curface.

Each dual-tandem ectuator cunsists of a full-area piston and 2 half-area
piston. Any two of the three hydraulic systems can drive beth canard surfaces
at 100% of the design hinge moment; 50% from system #1 through the two ferward
actuator full-area pistons, 50% from system #2 through the two aft actuator
full-2rea pistons, and 57% from system #3 through all four actuator half-area
pistons. Under normal conditions, (a1l 2 hydraulic systems operating) cach
tandem actuator is capable of providing 75% of the surface design hinge moment .

Valves are sized to meet the rate requirement at maximum load. A flow
limiter, 1imiting the maximum rate {0 70 degrees per second, avoids excessive

flow at the no-loed condition.

Actuation system components for each of the two camard surfaces consists of
the following:

Dual-tandem linear actuatcr

(2 required @ 39 pcunds each) 78.0 pounds
Control valve Module 7.0 rounds
Total keight, per surface 85.C founds

2.2.2 Elevons

Th2 elevon control surfaces have a duai roie tc provide both 'ongitudinal end
lateral cortrol of the airplanc. Actuation trades considered coth !inear ana
rotary actuator designs as well as installation of part of the system in the
body. The hinge moment requirements for the elevons are large and the
aveilable srace for equipment installation is small due to the thin wing
geametry. Configuration studies indicated that both linear and rotary
actuation equipment exceeded the designated envelofe.

Since the meximum hinge mement when movirng the trailing edge down is roughly

twice as large as the maximum hinge moment when moving it up, an unecual-eree
linear actuator can be used with the piston head-end area sized to meet the
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larger load and the rod-end arca sized to mect the smelier lcad, whereas the
rotary actuator has tc be sized to meet the larger loed. Trhe linear ectuetor
is the more efficient approach due to the inefficiency of a hydraulic
motor/gearbox arrangement. Also, since the elevon surfaces are used for
lorgitudinal trim, the steady-state aerodynamic l1oads would cause more fluid
Teakage across the hydraviic motors than the linear actuators.

Therefore, the choice ¢f the linear actuator for the elevon function results
in a lighter system with 1¢ss power consumption. Consideration was given to
installing the actuators in the btody tc avcid exceeding the envelore
requirement. However, the torque tubes required to carry the load to the
eleven became unreasonably large and heavy. A detailed study of the airplene
structure and geametry determined that an increased number of smaller diameter
linear actuators with shorter moment arms could be used to better fit the
enveiope with less fairing.

The selected contiguration (Figure 12, View F) uses four actuatcrs {two

dual/rarallel linear actuators) rer surface to meet the hinge moment

recquirements with minimum actuator dimensions and fairing. Eachk of tke four
actuators weighs 75 pounds.

The increase in drag due to the elevon actuator fairing on the baseline
airrlare is two-tenths of one percent of the totel airplane cruise drag., The
resulting impact on specific fuel consumption will be negligible and ro
furtker consideration will be given to this subject in the trade study.

The actuator and velve are sized to meet the rate requiremsnt at meximun load
and elso meet the maximum rate of 70 degrees/sec at no load. No flow limiters
are used. The major actuation characteristics are:

2 2

Actuator piston area 6.8 in

head end, 2.2 in
Moment Arm 10 inches
Stroke (Total) 6.7 inches

rod end
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3.2.2 Rudder
The rudder control surface provides directional control of the airplane.
Ectuation trades considered both 1inear and rotary actuation,

The rotary actuation system, Figure 12, View (, was chcsen for the rucder
function for the following recsons:

(1) Envelope restrictions require that linear actuators be placed in the
aircraft body which in turn requires ¢ long torque tube to cerry the
Toed evenly to the surface. Also, the lerge surface deflection, €0
degree total, requires a relatively long linear actuator. These two
factors result in a greater weight for the 1inear actuation system.
The rotary actuation system is able to fit in the designated envelope
and is able to handle the large surface deflection with less weight.,

(2) Due to the inefticiency of the hydraulic-motor/gearbox, fluid leakege
and peak rower consumption of the rotary actuation system is higher.
However, the rudder load and duty cycle are r¢latively low end power
censumption caused by internal fluid leakage across the hydraulic
motor is low.

Cne cenfiguration considered used three hinge-line gearboxes to distribute the
loéd to the rudder surface. Fowever, after detailed study of the structure,
geometry, and gearbox design, 1t was determined a single hinge-line gearbox
nas more desirable and would result in 2 weight saving.

The s: lected system consists of a pover ¢rive unit, including two hydraulic
motcers, control valves and a torque-summed reducing gearbox installed in the
body. A tercque tube is used to carry the 10ad to the single hinge-1line
gearbox attached to the surface. FKydraulic moters are sized to meet the rate
reguirement at maximum lcad. Ne flow limiter 15 recuired.

The actuation system for the rudder consists of the following components:

kydraulic Motor (2 required € 7.5 1bs) 15.C pounds
Hingel ine Gearbox 22.0 rounds
Reduction Gearbox 11.0 pounds

Total Weight 42.C rounds
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2.3.4 Spoilers

The spoiler control surfaces provicde, in conjunction with the elevons, latcral
control of the airplane. Actuation trades considered both linear and rotary
actuation,

Selection of a linear actuation system instead of a rotary actuation
arrangement was influenced by the following:

(1) An unequal-area linear actuator to handle unecual loads results in a
lighter system and lower power ccnsumption than & rotary actuetion
system.

(2) Spoilers are fairiy inactive during norme! fiight. The surfaces are
retracted most of the time and the actuators or the motors are
positioned to hold against the upward aerodynamic load. The
hydraul ic motor in a rotary actustion system with larger internel
fluid leakage consumes more power due to holding this loed. A
hydraulic check valve is usually provided in the hydraulic supply
1ine of the linear actuator to prevent beck driving when the
aerodynamic load exceeds the actuator capability. Use of the check
valve is not effective in the rotary actuation system tecause of the
higher internal leakege across the motor.

The selected system, Figure 12 View F, consists of an unecual-erea lineer
actuator driving eack of the four spciler segments. Each actuator weighs 17.8
pounds.

The larger actuator area (riston end} is active when the actuator is helding
the spoiler trailing cdge down, while the larger ares (rod end) is active when
the actuator is forcing the trailing edge up. A flow limiter is used to
reduce excessive flow in the no-lcad condition.

3.3.5% \leading Edye Flars

The original lircar actuator design 3pproach was to tie all leading eage flap
surfaces together and actuate by two linear actuators installed in the tody.
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This was founu imprectical due to the large torgue tube required to carry the
load out to the flaps. The alternative, shown in Figure 12 View L, uses two
linear actuatcrs, powered by a single kydraulic system, to control each flep
segnent and is the aprroach selected ur the Baseline Airglane, Since the
aerodynamic load is only exerted in one direction, an unequal-area actuator is
used. A blocking valve and bypass vaive are required so that the actuator
will remain in the last selected position in the event of total power loss. A
flow Timiter is required to !imit the actuatcr rate in the no-1oed condition.
A total of 12 actuators are reguired, each with a weight of 19.3 pounds.

A rotary actuation scheme, consisting of a body-mounted rower drive unit
driving through a torcue tube ard anyle gearbox to hingeline gearbcxes, was
alsc considered. The rotary actuation aprroach and the original linear
approach, with all leading edge flap segments connected together, were
abandoned in favor of the selected approach because:

{1) Total surface deflecticn is small and aerodyramic load is orly in one
directicn,

(2) Because of the inefficiency of the gearbtoxes and hydraulic mctors,
the rotary configuration is heavier and consumes more jpower. The
flaps are recuired tc operate during descent and landing vhen the
hydraulic power supply is Tow due to lower engine power settings.

(3) with 211 flaps tied together, there is a remcte chance for aswmmetric
derioyment in the event of a structural failure. Each linear
actuator incorporates & blocking velve so that in case of failure,
such as loss of hydraulic rower, the flap will remain in the last
selected position. Structural gemage, ¢r both actuators leaking,
could cause one flap tc tlow back which is less serious (and is

considered acceptable) than all three flaps failing together.

3.4 Lngine Inlet Cortrol Actuation

3.4.1 Engine Inlet Centerbody

The function of this actuation system is to drive a linkage assembly that
mcves the inlet centerbody ramp which in turn expends or contracts the
centerbcdy radially thereby regulating the speed of the ncoming air,

8




U P ory re e o mae = = e -

Both linear and rotary actuation schemes vere considered. Since the
aerodyramic load is in one direcvion only. an urccual-area linear actiuator
proves tc be considerably lighter than the less efficient rotary actuation
system.,

The g:neral arrangement is shown in Figure 12 View M. The actuator and velve
are sized to meet the meximum rate at meximum loed. A flow limiter is used to
timit flow in the no-load condition. One actuator is required per enginc,
with 2 weight of 18.0 rounds each.

3.4.2 Engine Inlet Bypass Doors

As shown in Figure 12 View P-P, there are four bypass doors for each engine.
The aerodynamic loads are small but the doors are required to open up to 90
degrees.

Both rotary end linear actuation systems were considered for this function

with the choize goin

“@ " ta tha ratary ruetam far tha FAallawin
W e :v Ill’ e, LN ., . UH‘IJ W L L W de 3

S VO ACNANHC o
EF A A ATl ~ try tCGeviie .

(1) A rotary system is more suited to lergc deflection angles; a linear
actuator would experience nonlinear motior at large defiection angles.
(2) A rotary system is more compact for this application.

The actuation system for each of the 4 rairs of bypass doors consists of the
following comporents:

Potary Vame Actuator 4.0 pounds
Total Weight per pair of doors 4.C pounds

3.5 Landing Gear and Brakes

7he hydraulic actuation concepts traditiorally used fer lending gear i
retraction, steering, and brakes, and for the other utility subsystems, have
been highiy refined over the past 40 years. Except for the few exceptions
noted, no improvement could be found in deviating from the nomal practice
other than using the increased pressure level seiected for this ATS study 3
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aircraft (See Section 3.10.3). For landing gear retraction, untalanced-piston
actuating cylinders cperating through appropriate bellcranks generate the
equired force moment to 1ift the gear against its combined dead weight and
serodynamic loads. kith built-in snubbing provisions, they can cushion the

1oad at either end of the stroke including the bottoming loed due to emergency
free-fall extension. Ali components are covered in the following paragraphs
except the isolation ~alves (Z at 2.0 pounds each), and the 3-pusition control
valve (1 at 2.0 pounds).

2.5.1 NMain Gear Retraction

The retraction/extension system fo- the main landing gear censiste of tvo
1inear piston actuators, one for each main gear, controlled by cne solenoid
vaive. Landing gear doors are siaved to the geer strut, and uplocks and
downlocks function tnrough the metion of the actuator end mechanical linkage.
This is an improvement over some existing aircraft whicr reguire sererate
actuators for actuating doors and position lecks. In additien, like most
aircraft, the system allows emergency free-fall extension following manual
releese of the ur'ock by the pilot. The instellation is shown in Figure 12
Yiew R,

The selected actuater extenas during gear retraction and retracts during geer
extensior. with snubbing provided at the retracted (gear extended) end. The
ectuatcr weight for each of the two mein gears is 12.¢ pounds.

3.5.2 Nose Gear Petraction

The retraection/extension system for tke nose gear consisits of one linear
piston 4ctuater in & system similar to that descr-ibed for each main gear. The
actuetor is controlled by the sam: solenoid velve used for the main gear. The
instailaticn is shown in Fivure 12 View S, '

Trhe selected acluater retracts during gear retraction and extends during gear
extension. Bctuator wefght s 29.5 pounds.
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3.8.3 Nose Cear Steering

Nose gear steering is provided by an actuator modile, consisting of a vane
type rotary power drive unit with spur gear output, electrohydraulic position
servovalve, and associated functional circuits. It is mounted on the nose
gear strut and drives a strut-mounted ring gear as shown in Figure 12 View S.
Actuator weight, including the hydraulic motor, is 22 pounds.

3.5.4 VMain Gear Wheel Brakes

The mein gear wheel brakes are multiple disk type using advanced comfosite
carben heat sink material. Actuation arrangement is the standard multifle
hydraulic pistons in 2 trake housing sized for 5000-rsi oferating fressure.
Two brakes are required, one per each main vheel.

The trake actuaticn components have been segregated from the total brake
assembly in order to permit a more meaningful compéarison with the All-Eiectric
firplane. The brake actuation system for each of the two mein gears consists
of the following components:

Piston Actuators (8 required @ Q.5 1b) 4.0 pounds
hear Adjustors (8 recuired € 1.0 1b) 8.0 rounds
Control Valve Module 9.0 pounds
Shutoff Velve 1.0 round

Parking valve 2.5 rounds
Pccumulator (including 2 pounds fluid) 13.C peurcs
Total, rer gear 37.€ rounds

2,6 Aerial Refueling System

A standard universal aerial refueling receptacle slipwcy installation (UARRSI)

is provided. For this study, the current 2,000-psi actuaticn system with two
linear piston actuators, the slipway door actuator and the nozzle ‘atch
actuator is used along with a pressure reducing valve to reduce the 5,0C0-psi

system pressure to 3,00C psi for this subsystem. Actuation system weignrts are:
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Refueling Door Actuator 1.5 pounds

Nozzle Latch Actuator 1.0 pound
Control Valve 3.3 rounds
Total 5.8 pounds

3,7 Canory Actuation

Due to the relatively large overhanging mament, a lirear piston actuator with
an operating lever arm as shown in Figure 12 View &, was selected. An
internal locking mechanism holds the actuator in its retracted (canopy ofen)
rosition, and internal snubbing is provided at toth ends of its stroke.
Actuation system weights are:

Linear . ctuator 2.9 rounds
Control valve 1.0 found
Total 2.9 pounds

3.8 Gur Drive

A hydrauiic motor s yused t3 drive the 25.mm Catling-type gun rotor similer to
the currently used 20-mm and 30-mm gun drives. C(ne motor 1s used to drive the
qun barrel and the ammunition feed system which recguire 14 hp and 11 hp
respectively at the design firing rate of 3,600 rounds fer minute. For this
study, a2 0.34 cu. in. rer rev, (cipr) mctor orerating "t 7,20C rpm drives the
main gun system drive shaft at 1,800 rpm through a 4:1 sreed-reducing gearbox.
Compcnent weights are as follows:

Cun Crive Gear Box 1C0.C founds
Fydreul iz Motor 7.6 pounds
3-Position Control Velve 8.4 pounds

Total 26.0 pounds

3.9 Envirommertal Control System (ECS)

In order to minimize engine fuel consumption on aircraft in the 1990 ¢ ime
frare, bleed-air extracticn as traditionally used for the £CS pack will
probetly rot be permitted. Since the weight and drag renalties for shaft
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rower extraction are considerably lower than for tleed-air extraction, it is
assumed that the ECS power unit ccmponents must be driven either directly by

the engine or by hydraulic or electric motors. The envirommental control
system has three power drive components as described in the foullowing
paragraphs., The system schematic diagram is shown in Figure 12.

3.9.1 ECS Boost Compressor

Thc ECS boost compressor raiscs ram air pressure to meet the pressure demands
of the ECS rack. It is a continuous-duty unit with a sreed range from 1£,0CC
to 40,000 rpm, and a maximum output of 50 hp. The boost campressor is mounted
on the right hand ergine-driven airframe-mounted accessory-drive (AMAD)
gearbox.

3.6.2 ECS Pack Compressor

The ECS pack compressor compresses the working fluid, air or freor, used by
the rafrigeraticn pack., It is 2 ceontinucus-duty umit with a fixed speed

tet ween 5,000 and 23,0CC rpm and an output power requirement of 10.7 hp. For
this study, a C.10-cipr motor drives the compressor directly at 10,000 rpm.
The hydraulic motor and associated 2-position control valve weigh a total of
.0 pounds.

3.9,2 Electronic Cooling Fan

Tre electronic cooling fan circulates air between the heat sink, provided by
the ECS refrigeraticn pack, and the electronic equipment. [t 1s a continudus-
duty two-speed unit running at 5,000 rpm during subsonic flight and 1¢,CCO rmm
during supersonic flight and draws 21.5 and 42.9 hp respectively at those
speeds. For this study, a 0.525-cipr motor drives the fan through a 1.5:1
speed-increesing gearbox. Component weights are as follows:

Gear Box 7.5 pounds
kydrauvlic Motor 7.6 pounds

2-Pgsition Control valve 1.C_found
Total 16.1 pounds
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.10 Secondary Power System

3.10.1 General Arrangement

During Phase Il several Secondary Pover System and subsystem arrangements were
devised, studied, and evaluated. This end the followirg sections summarize
thet effort and describe the selected system.

A significant factor in the development of the secondary rower generation
system avrangement is the ability to drive the engine-driven hydraul ic pumps
and electrical generators on the ground for system checkouts without towering
the main engines. This led to the seiection of airframe-mounted
accessory-drive (AMAD) gearboxes which can be declutched from the main engines
for the ground checkouts and reclutched for normal oreraticn. Stuch units were
developed for the Boeing supersonic transpert and have been used on several
recent military ajrcraft includ’ng the B-1 bember, and the F-i%, F-16, and
F-18 fighters.

S&nother siqnificant facto. is to provide power for starting the mgin engires
without external power sources. Three types of engine starters were
considered: a solid propellant or liguid propellent cartridge unit for each
engine which suprlies hot gas to an air turbine starter on each engire; a geas
turbine APU which provides hot yas to an air turbine starter on each engine;
or, a gas turdire APJ or Jjet fuei starter which provides shaft rover to eaech
eng irie.

The last cipice was favored since it can 2lso provide chaft power to the fMAD
gearboxes tc cdrive the main hvdravlic pumps and generators foir ground
checkouts. Of the several tyres of gas turbine power units which could be
considered, ths LCX/JP-8 integrated rower unit (IPU) was chosen as the moct
promising. This concept, which is beirg developed by the Rocketcdyne Divisien
of Rockweil International under Air force Aero Propulsion Laboratory contract
car operate either in a piprojellant power mode, with atrcraft fuel (J/-4) and
liguic oxygen (LOX) oxidizer, or in a standard gas turtine mode with JP-4 fuel
gnd cutside air,
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The selected arrangement is shown in Figure 14 and tne drive system components
and weights listed in Tatle ©. The LCX/JP-4 IPU and angie geerbox, bothk
normal ly declutched in flight, are connected to the AMAD gearboxes for ground
checkout of the hydraulic and electrical! systems and for engine starting., The
normal sequence is to start the IPU with the LOX/JP-4 gas gcnerator and then
inmediately switch to the gas turbine mode in order to conserve LOX. Then,
one or both AMAD gearboxes can be connected for system checkouts. The engine
power-takeoff shafts can be connected for engine starting followinag which the
IPU can be shut down and the angle gearbox declutched from cach AMAD gearbox.
Each AMAD gearbox remains connected to its &djacent engine throughout the
normz2l flight orerations.

During an emergency situation where either engine suffers a flameout, shaft
Fower can te extracted either from the opposite engine or the IPU for starting
the disabled engine and keeping 1ts AMAD gearbox rumning. In the event of
simul taneous loss of rower from both engines, the IPU can be started in the
LCX/JP-4 mode immediately at any altitude and provi“e sufficient power to

ctart arninne and AdAeiua tha AMAN naawmhnava
Tewt e Ly i MY OLEN Wil s i U WA C

1€ -~ inA efawntin
T A A

no s ranrnant ha
“hgan e o<

5. rting canr
accomplisked, the IPU continues to drive the pumps and generatcrs on the AVAD
gearboxes so that the pilot can maintain vehicle attitude as necessary for an

engine start at lower altitude or for a safe ditching or bailout.
3.10.2 Electrical Power System

The €lectrical power system for the Baseline Airplane is recuired to provide
eiectrical ruwer in accordance with the requirements of MIL-E-25499 and
MIL-STD-7C4C. It must provide source redurdercy for supplying rover to the
fly-by-wire tlight control system and cther fligrt-critical loeds in the
Baseline Airplane configuration. The electrical power system inciudes
generators, fower conversion equimment, ¢istridution circuits, and associated
control and protection devices.

Thicee different clectri.al rower generation ccncefts were ccmparatively
evaluated during Phase [I:
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TABLE ¢

ACCESSORY DRIVE SYSTEM COMPONENTS

1TEN WEIGHT (POUNDS)

RH AMAD GEAR3OX 60

RH INPUT CLUTCH 12

RH OUTPUT CLUTCH 7

RH INPUT SHAFTING 8

KH OUTPUT SHAFTING 3

RH STRUCTURAL PRCVISIONS 9

TOTAL, RH AMAD SYSTEM 99

LH AMAG GEARBOX 54

LH INPUT CLUTCH 12

LH OUTPUT CLUTCH 7

LH INPUT SHAFTING 8

LH OUTPUT SHAFTING 3

LH STRUCTURAL PROVISIONS 9

TOTAL, LH AMAD SYSTEM 93

; ANGLE AMAD GEARBOX 25
: ANGLE BOX INPUT CLUTCH 7
ANGLE BOX INPUT SHAFTING 3
: ANGLE BOX STRUCTURAL PROVISIONS 4

TOTAL, ANGLE AMAD SYSTEM 39
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(1) Integratcd Drive Cenerator (IDG) system
(2) Cycloconverter type variatle-speed, constant-frequency (VSCF) System

(3) DC-Link type VSCF system

The cycloconverter type VSCF concept was selected tecause of its higher
operating efficiency, lower life-cycle cost, and higher reliabilicy.
Equipment rating is based on the electrical load analysis discussed in the
following pairegraph.

3.10.2.1 Load Analysis

A cdetailed electrice! load ane ysis was conducted during Phase Ii and is shown
in Figure 15 and Tables 10 and 11.

3.10.2.2 Seilected System Lfrrangement

A schemetic diagram of the electrical rpower system arrangement is shown in
Figure 16 and o Vist of major components and weights in Tabie 12, Prwmary
power generation consists of two samariua-cobalt permenent-magnet generators,
one mounted on each AMAD gearbox, as shown in Figure 14, Permanent-magnet
generators were selected rather than wound rotor generators because of
increesed generatcr efficiency, improved reliability, no rotor cooling
recuirement , and improved rotor baiance due to the sclid rotor. The vcriable-
frequency generator output is fed to a cycloconverter, the output of which is
3-rhese 1207208 volts, 400 Hz. Each generatcr/cyclcconverter channel is rated
at HC kVA to provide margin for load growth. The AC load buses are
interconnected by switches which allow transferring lcads of a disabied
gencrator to the other generator. Logic prevents paraliel operation of the
generators. Three transformer-rectifier units (TRU) convert 2-rhase 4G0 Hz
rower to 28 volts DC.

AC and DC ground buses permit ground servicing of the airplane and checkout of
same equipment using ground rower without energizing all of the equipment,

par .icularly electronics, for long reriods of tim¢ on the ground. The source
of ground power can be either exterral electrical rower via an external fower
recertacie or one of the AMAD gearbox-mcunted main aircraft generaters driven
by the IPU.
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TABLE 12
BASELINE AIRPLANE - ELECTRICAL PCWER SYSTEM CCMPCNENTS

COMPONENT QUANTITY chTg_l_ggi kEI(TISPi'-lhs

Generator 2 30 €0
Cycloconverter 2 6C 120

Emergency Cenerator 1 36 26

Hyd. Motor-Emerg Gen 1 14. & 14.8

Control vaive-Emerg Cen H 1.1 1.1
Transformer-Rectifier Unit 3 1.5 27.5

Battery 40 A-Hr 1 7% 75

Battery Charger 1 6.8 6.8

Static Inverter 1 12.C 13.C

AC Power Pelay 3 POT 1 1.2 1.2

AC Power Reley 2 POT 1 1.6 1.6

AC tower Contactor 3 P5T, 20 kVA 1 3.8 3.t -
AC Power Contactor 3 PST, 60 kVA 3 5.2 18.¢ i
AC Power Cantactor 3 PDY, 60 kVA 2 6.2 12.4

DC Power Contactor SPST 3 C.8 2.4

NC Power Corntactor SPOT 2 2.1 4.2

Niring and Connectors, total 122 123
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Three high.reliability DC buses are provided for powering the triple-redundant,
fly-by-wive flight 2nntrol system. Each of these buses (FCE CHl, FCE CH2, and
FCE CH2 in Figure 16) is supplied by two sources of power: a gGenerator and a
battery. The three buses share & common hattery, but each bus is connected to
the primary electrical jower sources, i.e. the generators, tirough s different
TRY. Since there are ¢nly two main generators, two of the TRUS have to share
a common generator. One of these TRUsS (numter 3 in Figure 16) is suppiied
fran the AC ground bus, which 1s provided with switching and coatrol logic <o
that if either main AC bus is energized the AC around bus is energized. Thus
no singie tailure of a power source will cause a power interruptiocn on ainy of
the FCE buses. Loss of the battery and ore generator will cause mementary
loss of one or two FCE channels, depending on whether cr not the failed
generator is the one normally surclying the £C 5round bus. Power wili be
recovered to 2ll FIE buses within a few milliseccnds when the AC Dus or buses
on the failed generator are ‘transferred 3utumétically to the remaining
generator,

ator, driven at 200N r~mm hy a N.375-cior hydraulic motor, is
included to provide power for the critical electrical eguipment such as the
fly-by-wire flight controls in the event of 1oss of both main generators.

This generator is rated at 20 kVvA, 3-phase 120/208 volts 400 Fz. 1t can be
connected to any or all of the three main AC buses.

A 40-ampere-hour nickel-cadmius battery is included as backup for the
emergency generator, The bettery serves to maintain continuity of power to
the criticel loads during start-up of the emergency generator or the [PU
following loss of both main generators or both engines. 1in the event of loss
of both engines, the IPU will be clutched to ore or toth AMAD gearboxes to
drive the hydrauiic pumps and the main gererators. The [PU is careble of
starting an engine in flight while driving the loaded generators and hydraulic
pumrs .

3.10.2 Hygraulic Power System

The primery goal in configuring the hydrauli¢ power system for the Paseline
Airplane was te provide the most competitive arrangement, in terms of <ize,
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weight, reliability, meintzinability, and cost, thet could be considered
avaiiable for the 199C time frame. Onre of the first questions was to
determine the nunber of hydrauiic subsystems recuired.

Ricorous compliance with MIL-H-5440G could lead to the use of three subsystems
since it requires that the hydraulic system(s) be configured such thét any two
fluid system failures due to combat or othar cunage which cause loss of fluid
or pressure will not -psult in comglete loss of flight control, and thet the
surviving system(s) shall provide sufficient cuntrol to meet the level 3
flying qualities of MIL-F-8785 for converticnal takeoff and landing. hLowever,
. fron the requirements for the individuai actuation systems listed in Tabl:o 4,
ofily the canard and ele on actuation systems have 2 firm recuirement to
maintain actuation capability after the failure of two rower sources.
Ther2fcre, it was possible to consider either of tvwo becic crtions:
a. Provide three main hydraulic subsystems
b. Provide two main stbsystems with one or more additional auxiliary systems

Before a selection was made, a VYoed 3analysis was condicted, operating rressure
selected, and a runber of configuration airangements were made for study.

2.10.2.1 Load Analysis

The hydraulic fiow rates recguired for each actuater and hydraulic moter to
nbtain its design slew rate or speed were determined during Phase [1 and are
t%cu in Table 13. The maximum simultanecus fiow demends for various flight
~nditions vere determined for each of the candidate hydraulic systems and are
te¢ in Tables 14 through 16 Tor the selected acrangemert. Pump Sizes were
. determined and are listed in Tab 17.

3.10.3.2 C(perating Pressure

A number of studies, starting with those conducted by the Glenn L. Martin
Company (published in 1954 in Reference 7) have shown that hydraulic system
weight can be educed by increasing system operating iressure above the
stancard 2,00C psi level. Several aircraft in the intervening years,
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including the USAF B8-70 and B-1 bombers, the Concorde superscnic transport,
and other foreign aircraft, have been designed with 4,000 psi systems; and,
the Navy, in their desive for absolute weight minimization for future V/STOL
aircraft, has sponsored cevelcpnent of £,000 psi system technoiogy.

Aovwever, ir studies previously condusted at Boeing, it was concluded that,
with nommal design practice for air Force combat aircraft, the minimum weight
of hydraulic transmission line tube runs would be obtained with a system
aperacing cressure of apcroximately 5,000 g3 and that- their weight would
increase at nigher pressuvres. This is shown in Figure 17. As shown in the
LAMIMAR (F=4) curve, the minimum-weight pressure for tubing designed for
laminar fiow, with a burst safety factor of four times working pressure, is
arproximately 5,060 £si. With a burst safety factor of three times working
pressure (the LAMINAR F=3 curve) the minimum-weight pressure is approximately
6,0CO psi; however, tnere is very little reduction of weight by going to
pressures above 5,000 psi.

These curves al so show that t e minimum-weight rreessure increases it the
tubing is sized for turbulent flow. Since most Newy aircraft are not required
to start up from a cold soak condition ard becume airborne within a few
minutes, as required for most Air Force combat aircraft, the Nevy's tubirg
s.zes can be smaller and the fluid flow is nearly always turbulent. (Note
that Figure 17 was prepared for a presentation to the Neval Air Pevelorment
Certer and tke Naval Air Systems Command, and that the curves are based on
eauations which included the characteristics of MIL-H-83287 fluid end the
JA1-2.5V titanium alloy tucing. It is expected thet the minimum-weight
pressures would be approximately the same for other i ydraulic fluids but would
be somevhet lower for tubing alloys with ;ower strength-to-weight ratios.
However, for an ATS aircrafc in the 1990 time frame, (he use of 3A1-2.5V cold
worked titanium tubing is concidered a good choice at this time.]

Figure 18 illustrates the transition temperatures where laminar flow of
MIL-H-56C6 fluid in system tubing changes to turbulent flow for a {ypical
desiagn flow velocity of 2C feet per second. MNote that for almost all of the
normally used tubing sizes (-12 and smalier), the transiticn temperatuve is
above zero degrees Fahrenheit. Since it is considered that the ATS aircraft
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used in this study is the type which must be able to start up from a cold soak
cordition and become airborne within minutes, it is assumed that there vill be

times when design flow rates must be provided st fluid temperatures belcw zero
deareces and that the tubing must be designed for laminar flow conditicns .

In addition to the transmission line tubing, the hydraulic actuators also
rerresent a significant portion of the overall system weight. As shoen in
Figure 19, minimun weight for typical actuaters is expected between 3,CC0 and
6,000 psi depending upon actuator force size. As shown in Figure 20, the
optimum pressure for minimum space volume is somevhat higher, and also
increases with actuator force size.

Therefore, in consideration that the predicted actuaticn forces for the study
aircraft are high, and in the interests of weight and space optimi zation,
5,000 psi was crosen as the system orerating pressure.

32,10.3.3 Selected System Arrangement

The three-system hydraulic power arrangement was selected for the following
reasons:

(1) Hydraulic pump sizes required are within the range of sizes currently
available for 3000 and 4000-psi aircraft hydraulic systems. The
development of 500C-psi pumps in those sizes Tor use ir the 199C-rlus
time frame should present no insurmountatle rroblems for the punp
manufacturers.

(2) The recuired sizes of the auxiliary pumps in the two system
arrangements present a major problem due to the size of the electric
drive motors

(3) The three-system arrangement is lighter and less compiex than the
two-system arrangement.

A block dragram of the selected arrangement is shown in Figure 21, & schemetic
diagram in Figure 22, and a list of major components in Table 18.
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TAELE 18
BASELINE AIRPLANE - HYDRAULIC POWER SYSTEM COMPCNENTS

UNIT FLUID WT TOTAL
COMPONENT QUANTITY  MWEIGHY (1bs) PER UNIT WEIGHY {1bs)

Hydraul ic Pump 4 27.0 3.0 120.0
Reservoir No 1 1 11.5 15.0 26.5
Reservoir No 2 and 3 2 5.0 6.0 22.C
Temp Control Valves 3 1.0 -- 3.0
Over Temp .witches 3 0.1 -- 0.3
Heat Exchangers 3 3.0 0.1 9.3
Filter Module No 1 1 23.0 2.3 25.3
Filter Module N¢ 2 and 3 2 15.0 1.5 33.0
Case Drain Filter Module 4 g.C 0.4 33.6
Reservoir Service Panel 1 10.C 0.6 10.6
Reservoir Relief Valves 6 0.1 -- 0.6
Reservoir Bleeder Vaives & 0.1 -- 0.6
Firewall 5.0, Vaives 4 1.7 -- 6.8
Disconnects 10 1.28 -- 12.8
Hydraulic Hand Pump 1 3.4 -- 3.4
Pressure T.unsmitters 2 0.2 -- C.6
Tubing and Fittings (Total) 80.8 52.3 133.1

TCTAL 441.5




Iv AL -ELECTRIC AIRPLANE CCNFIGURATICN
4.1 General

The objective of the design phase was to select the most competitive

combination of electrical actuation systems and electrical rower systems for

¥ transmitting power tc those systems and for providing fly-by-wire control to
the flight control actuation systems that could be considered for the
100-plus time frame. In keering with the overall cbjectives ard
requirements, it was required that the selected electrical power system derive
its power primarily from the cngine through engine-driven electrical
gengrators and trensmit that power through a distribution system of electrical
buses. The totel secondery power system and actuation systems are defineu »¢
that a direct comparison can be made with the Baseline Airplane design
described in Section [1l.

4.2 Actuation Systems for the All-Electric Airplarc

Two actuation tyres were considered for the 811-flectric Airplane actuation
functions, i.e., the electromechanical actuator (EMA) system ani the
integrated actualor package (IAP) system. Three EVMA schemes were considered:
the servomotor gearbox, clutched electrical actuation, and the mecranical
servo rower package (MSPP). Alsu, three IAP concepts were considered: the
serverump concept, accunulator stored-erergy concert, and the tixed-
displacement pump ccncept. The JAP concept, however, was rejected for 11
actuation functions since in caclk case it proved to be hecavier than the
comparable EMA ir most arpli.aticons,

Under & subcemyract, AiResearch Manufacturing Company of Californie assisted
in providing data for configurations of EMAs for the various actuation
functions. The resuits of their study effort is refported in AiResearch
Cocument No. 80-17284 (Reference 1).

Data obtained from AiResearch along with data obtaired from other suppliers
was used to arrive at a selection for the actuation system for each of the

funct ons. Table 19 summar- 2es trhe selected systems for the airplene flight
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controls and Tables 20 and 21 for the non-f1ight control functions. Figure 23
shovs the location of the actuation systems in the aircraft and Figure 24
shows how these actuators are inteqrated into the aircraft. Each of the
individual applications is covered in the folloving rparagrarhs.

For ecach actuator arplication that utilizes @ OC trushless motor, a serarate
controli~r/inverter is recuired. Quring Phase II, various methods for
rackaging and <ooling these units vere investigated. The original rackaging
concept decided upon was an evsporative coouled configuration in which the
electronics vere installed in a circular container filled with a fluid cooling
medium. However, after sizing the various controller/inverters to the
individual actuation requirements, it was found that the units were very
heavy, with approximetely half the weight being due tc the fluid ccoling
mediun. Therefore, another packaging and cooling method was devised in vhich
the heat-producing electronics are mounted on a cold-plate through which a
cooling fluid is punped. The difference in these packaging concepts in terms
of volume and weight is indicatec below:

Controller/Inverter Evaporative Coolin Cold-Plate Cnolin
Reting (Amps Vol (inél Wt (IBs§ Vol (1n§§ ¥Vt (TEs)

5C 172 11.5 £6 4.0
100 426 22.5 113 7.2
180 508 36.0 1€9 li.l
200 €72 48.C 225 14.2

APlthough the volume and weight saving with the cold flate cooling concept is
impressive, some of these savinrgs must go back irto the liguid ccoling system
required to support this concept. The ligquid cceling system is described in
paragragh 4.9.4,

Configuration studies were continued after completion cf Phase 11 and have
resulted in the following actuation system changes which are reflected in
Tables 19, 2C, and 21:

——
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Canard .. changed cooling of centroller/inverter from
shared £/S to cold plate

Pudder - change¢ from AP to EMA system

LE Flaps - chtanged cooling of controller/inverter from
forced air tc cold rlate

Land ing Gear Retraction - changed from AC motors to 27CY DC motors

(both main and nose gear)
Perial Refueling and Canopy - changed from AC motors to 28V DC motors (3

places)
Cun Drive - added controller/inverter
ECS Boost Compressor - changed cooling of controller/inverter from

shared E/E to cold plate

ECS Pack Compressor and ECS

fan - changed from AC motors to 270V DC motors
ard added controller/inverters with cold
plete cooling

Tha rationale for these changes is covered in the following paragraphs which
cover these functions.

4,3 Flight Control Actuetion

4.3.1 Canard

Actuation trades considered the tvo canard surfaces interconnected as well as
separated, 2 was done for the faseline Airplane. The selec:.ed configuration
is a ballscrew actuator driving each canard surface (not intercernected). The
redundancy reguircments as specified in Table 4 are met by using three motors,
maegnetically summed on the same shaft, to power each actuator. The motors are
sized so that with one motor failed, the remaining two motors can fower the
actuator at rated lcad and speed, The configuration is shown in Figure 24
View A-A, and was selected for the following reasons:

(1) Significant weight sav 1g over the other two types of £¥A and the TAP
configurations,

. r——




(2) Deleting the interconnection between the tvo cenard surfaces saves
veight and reduces complexity. The added actuation redundancy for
separate surface control has minimel weight impact since no
additional control capability is added in terms of increased fower.

The actuation system for each of the two canard surfaces consists of the
following components:

Ballscrew Actuator 38.0 pounds
270V OC Motor (3 recguired @ €.0 1bs) 24.0 pounds
Controller/Inverter {2 required @ 7.7 1bs) 23.1 peunds

Total Weight per Surface 85.1 pounds

4.2.,2 Elevens

Actuation trades considered @ hingeline actuation system, a bedy-mcunted fover
drive unit (PDU) and hingeline gearbox configuration and an IAP. The body-
mcunted POU, consisting of twe motors and a torcue summed acarbx, along with
2 hingeline rotary gearbox shown in Figure 24 View F, is the selected
configuration for the following reasons:

(1) Less weight than hingeline EMA and IAP configuraticns.
(2) It is the only configuration considered thet fits within the
available envelore.

The actuation system for each of the two elevon surfaces consists of the
following components:

PDU/Fingel inc Cearbox 70.C pounds
Z270v DC Mot:r (2 required @ 13.7 1lbs) 27.4 rounds
Controller/Inverter (2 required @ 24.5 1bs) _49.0 pcunds

Total keight per Surface 146.4 rounds

4,3.2 Rudder

Two EMA configurations and three IAP configurations were eveluated durirg
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Phase 1! and the POU/hingeline gearbox EVA system selected for the rudder
function because it has the least weight and complexity.

The actuation system for the rudder consists of the following components:

POU/Kingel ine Gearbox 39.C pounds
27CV OC Motor (2 Requir.d @ 10.5 1bs) 21.0 rounds
Controller/Inverter (2 Recuired @ 14.C 1bs) 28.0 rourds

Total Weight, Rudder Actuation System  88.0 pounds

4,.3.4 Spoilers

A single hingel ine motor/gearbox for each spoiler segment was seiected over
other concepts for the following reasons:

(1) Lighter and simpler than other EMA concepts (e.g., PDU in tody
driving hingeline geartox through a torque tute; bellscrew linear
actuator)

(2) AP offers no significant advantage over EMA actuation system
A neat, compact installation is possible as shown in Figure 24
View F.

The actuation system Tor each of the four spoiler surfaces consists of the
following components:

POU/HFingel ine Gearbox 1¢.C pounds
270y DC Motor £.0 rounds
Controller/Inverter 7.C_rounds

Total weight per Spoiler 22.0 pounds

4.3.5 Leading-Edge Fiers

A single hingeline motor/gearbox for each leading-edge flar segment was the
selected configuration for the seme rezsons as listed for the spoiler
application, paragrarh 4.2,4. Synchronization of the flaps is accomplished
electrically.
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he actuation system for each of the six leading-cdge flar segments consists
of the following comp. ients:

Hingel ine Gearbox 34.7 pound:
27¢v OC Motor €.5 pounds
Controller/Inverter _8 5 pounds

Total, rer flap segment 49,7 pounds

4.4 Engine 1nlet Control Actuation

4,4.1 Engine Inlet Centerbody

Only linear ectuation concepts were considered since the centerbody gecmetry
and operational requirements dictate the use of a linear actuator. The

configuration selected is a linear ballscrew electromechanical actuaztor shown
in Figure 24 View V,

The aciuation sysiem Tor each of

¢ two enginc inlgt centerbodies consists of
the following components:
Ballscrew Actuator 2.0 pounds
27OV DOC Moter E.0 pounds
Controller/Inverter 7.5 pounds
Total weigirt, per emgine 44.% rounds

4.4,2 Engine [nlet Byrpass Doors

The selected cenfiguration, shown in Figure 24 View P-P, consists of one tkA
{single motor plus plénetary gearbox package) operating each pair of doors.

The actuation system for each of the four pairs of bypass doors consists of

the following components:

Planetary Cearbox 3.0 pounds
270V DC Motor 1.0 pound
Controller/inverter 1.0 pound

Total weight rer Pair of Doors E£.( pounds
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4.5 Lending Gear end Erakes

4.5.1 Fain Gear Retraction

The main gear retraction system consists of a linear ballscrew actuator
rowered by a 27CV DC motor for each main landing gear. A separate controller/
inverter is provided for each motor. This arrangement differs from the
configuration selected during Fhase [I since it was powered by a 400 Fz AC
motor. The weight difference is negligible, however, since the weight of the
AC motor 1is nearly identical with the cambined weight of the 270V 0C motor and
the controller/inverter. Installation of the mein gear actuator is shown in
Figure 24 View R.

The actuation system for each ¢f the tvo main landing gears consists of the
following components:

Ballscrew Actuator 20.0 pounds
270V DC Motor 5.0 rounds
Controller/Inverter 5.7 founds

Total keight per gear 30.7 rounds

4,5.2 Nose Gear Retraction

As in the case of the main gear retraction system, the configuraticn ¢f the
nose gear retiaction system has changed from that selected during Phase 1I1.
The AC motor has been repleced by a 270V DC motor and 3 controller/inverter

with a very slight decrease in veignt. [nstallation is shown in Figure 24
View S.

The actuation system for the single ncse landing gear consists of the
following:

Ballscrew Actuater 20.0 pourds
27Cv DC NMotor £.0 pounds
Controller/Inverter 5.7 _pounds

Total weight, Nose Gear Actuation 3C.7 rounds
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4.5.3 MNose Cear Steering

The actuator configuration selected for nose gear steering is a rotery
actuator powered by a 28V LC brush type motor, This configuration fermits
operetion of the ncse gear steering function during towing oferations on the
ground when the only scurce of power is the aircraft battery.

The actuation system for nose gear steering consists of the following

cumgonents: .
Rotary Actuator 20.C pounds
28V DC Brush Type Motor 4.0 rounds

Total weight 24.0 pounds

§.5.4 Main Gear Wheel 8rakes

A stucdy of electric brake actuation was made by Goodyear herospace Cempany.

weight estimates for the seiected wheel and brake are as follows:

Wheel Acsembly 77 pounds

Breke Assembly 94 pounds
The brake actuation components have been segregcted frem the total brake JF
assembly in order tc permit a more meaningful comparison with the Baselire ~7;;

Airplane. The brake actuation system for each of the tvo main gears consists
of the fcllowing components:

Bull Ring Assembly 7.0 pounds O
rFotor (8 required @ C.75 lbs) 6.C pounds e
Totel, per gear 15.C pounds

4.6 Aerial Refueling System -

The aerial refueling actuation system is similar to the hydraulically actuated
system in the Baseline Airplane (raragraph 3.6) excert tnat a rotary
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electromechanical actuator (ZMA) is used for door ectuation and @ line. r EMA
is used for nozzle latch actuation. PRated .vads and weights are as follows:

Door EMA (Rotary)

Rated Load 0.5 HP

Actuator keight 8.0 pounds

Motor Weight 0.25 pounds
Total! Veight 8.25 pounds

Noz2zie Letch EMA (Lineer)

Rated Load 1750 pounds
Actuator keight 4.0 pounde
Motor keight 0.7 pounds
Total keight 4,7 pounds

Both actuators are powered by 28V DC brush type mctors so that the system can
be operated from battery pover in an emergency.

4,7 {Canopy Actuation

A linear EMA, with characteristics as listed below, was selected for canory
actuation: .

Rated load 0.5 hp

Actuator weight 7.0 pounds

Motor keight 1.0 pourds
Total Weight 2,.C pounds

The actuator 15 powered by 2 28V DC brush tyre motor sc that the canopy can
be operated fram battery rower when other power sources are nnt availeble.

4.2 Gun Drive

The total power required for the 25-mm Gatling gun is 25 hp which includes

14 hn for the gun drive and 11 hp for the feed system. A 270v 0C, 2C,000 rpm,
brushless motor was selected to provide the recuired power. Comgonent weights
are:
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Gearbox 1.5 pounds
Motor 11.2 pounds
Controller/Inverter 9.8 rounds

Total keight 2€.5 pounds

4.9 Environmental Control System (ECS)

the ECS in the All-Electric Airplane is identical to that in the Baseline
Airplane (Figure 13) except for the electrically driven components described
in the following paragraphs.

4.9.1 ECS Boost Compressor

The ECS boost compressor is driven by a brushless DC motor with a weight of
21.4 pounds. The required motor controller/inverter weighs 1% rounds. ODut:
cycle is continuous during climb, cruise, ana landing. No boost comfressicn
is required during flight at Mach 2.2 and 6Q,00C feet altitrude.

4.2.2 ECS Pack compressor

The ECS pack compressor compresses the fluid used bty the refrigeraticn pack.
It is driven by a brushless DC motor whic! weighs 11 pounds. The associated
contralier/inverter weighs & pounds and duty cycle is continuous.

4,9.3 Electronic Cecling Fan

The electronic cooling fan circulates air between the heat sirk, providec by
the ECS refrigeration pack, and the electrenic equipnent. [t is a centinuous
duty unit driven by & brushless DC motor weighing 18.4 pounds and a
controller/inverter at 16 pounds.

4.9.4 Liouid Cooling System

The actuation systems for the All-Electric Airplane described ia paragraphs
4.2 through 4.6.3 include a total of 28 liquid-cooled controlier/inverters.
“his paragrarh describes the liquid cooling system needed to provide cooling
for the controlier/inverter.
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Due to redundancy recuirements in the flight control system, three serarate
cooling loops are requirad. Heat loads have been divided ameng the three
loops «s ecually as possitle and the components sized accordingly.

A schematic diagram of the system is shown in Figure 25 and comfonent weights
are summari zed below:

Reservoirs (3) 9.2 pcunds
Fotor/Pump (3) 7.5 pounds
Controller/Inverter (3) 6.0 pounds
Heat Exchangers (3) 6.0 pounds
Tubing, fluid-total 22.1 pounds
Installation, wiring - total 30.0 fpounds

Total weight 81.5 pounds

4,10 Secondary Power System

The secondery power system for the All-Dlectric Mirplane is the Electrical '

Pover System,

4.10.]1 Electrical Power System

The electrical power syscem was designed to meet the requirements of power
quantity, power quality, and source redundancy for the rower-by-wire flight
control actuators and fly-bv-wire cenirol of those actuators, as well as the
weapons systems, avionics, fuel control, and other utility systems that
cenventionally use electrical power. The generators alco shall serve es
motors for engine startirg.

The cbjective in this phase of the study was to select the most competitive
combination of electrical power generation and distribution system components

that could be considered available in the 1990 plus time frame.

Before selecting the electrical system configuration, a comparison stucy was
made to select the specific starter-generator and power conditioning ecuipment
tyre to be used in the final trade study. Three basic concepts were
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considcred for processing the raw power (wild frequency, wild voltage)
delivered by the generator:

1. Convert all df the vower to regulated 120/208 volts, 400 ¥z, and then
rectify the desired portion to 270 volts DC.

2. Convert the desired portions of power {rom generated voitage and fre-
quency directiy to 270 volts D{ and 120/208 volts 400 Rz.

3. Convert all of the raw power to regulated 27C volts DOC and then
invert the desired prortion to 120/208 volts, 4CC Hz.

The elecirical power system configuration selected during Phase II is shown in
Figure 26. This configuration met the electrical load profile shown in Figure
27. Fowever, a major concern with this configuration was the relatively large
weight of the cycloconverters (a total of 21C pounds for the 2 units). This,
plus the fact that the rectifier bridges were lightly loaded, caused the
question: Wwhy can't loads be moved frem 4CC ¥z AC to the DC busses, the cyclo-
converters eliminated, and the remaining AC reguirements met by small

The electrical load analysis was examined and the following loacds identified
as thcse that could be powered by DBC instead of 400 Pz fower:

CCNNECTED LCAD

LorD [
Primary Fuel Boost Pumrs 7.2
Backup Fuel Bpgost Pumps 7.3
Fuel Transfer Pumps 7.3
Electroric Cooling Liquid Pump 2.0
Nose Cear Retract Actuator 5.°
Fain Gear Retract Actuators 9.4
ECS Compressor Motor 9.4
ECS Fan PMotor 37.6
Transformer - Rectifier (nits g.2
Lights 1.1
Aerial Refueling 0.4
Canopy Actuator Y

_....-».-—-—vl.d -
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Therefore, of the 99 kk of connected load supilied by 40C bz A